

Big Book of Helpful Hints for Yr 12 General Maths

1 : INVESTIGATING DATA DISTRIBUTIONS.....	10
1A Types of data.....	10
Categorical.....	10
Numerical.....	10
Nominal.....	10
Ordinal.....	10
Discrete.....	10
Continuous.....	10
1B Display and describe categorical variables.....	10
Frequency tables.....	10
Bar charts.....	11
Segmented bar chart.....	11
Mode, or modal category.....	12
Categorical variable report guidelines.....	12
1C Displaying and describing numerical data.....	13
Frequency tables.....	13
Discrete data, small number of values.....	13
Grouped frequency table.....	13
Histograms.....	14
Histogram for ungrouped discrete data.....	14
Histogram from frequency table.....	14
Report histogram.....	15
Shape.....	15
Centre.....	16
Spread.....	16
Outliers.....	16
1D Dot plots and stem plots.....	17
Dot plots.....	17
Stem plots.....	17
Stem plots with split stems.....	18
1E Using a \log_{10} scale to display data.....	19
$\log_{10}x$	19
Logarithmic transformation.....	19
Working with logarithms.....	19
Analysing data displays with a logarithmic scale.....	19

Histogram of the weights of 27 animal species plotted on a log scale.....	19
1F Measures of centre and spread.....	20
Median, range and interquartile range.....	20
Median.....	20
Range.....	20
Interquartile range (IQR).....	21
Why is IQR more useful than range?.....	21
The mean and standard deviation.....	21
Mean.....	21
Choosing between the mean and the median.....	21
Standard deviation (s).....	22
1G The five-number summary and the boxplot.....	23
Five-number summary.....	23
Boxplot.....	23
Outliers.....	23
Worked example : boxplot with outlier.....	24
Report Boxplot.....	25
1H The normal distribution and the 68–95–99.7% rule.....	26
Example : find % from interval.....	26
Example : find interval from %.....	27
Standard score, z-score.....	28
Example : raw score to z-score.....	28
Example : z-score to raw score.....	28
2 INVESTIGATING ASSOCIATIONS BETWEEN TWO VARIABLES.....	29
2A Explanatory (EV) and Response (RV) variables.....	29
2B Associations between categorical variables.....	29
Two-way frequency tables.....	29
% two-way frequency tables.....	30
Report.....	30
Two-way tables for categorical variables taking more than two values.....	30
Report.....	31
The segmented bar chart.....	31
2C Association between a numerical and a categorical variable.....	32
Using parallel dot plots.....	32
Report.....	32
Using back-to-back stem plots.....	32
Report:.....	32

Using parallel box plots.....	33
Report.....	33
2D Associations between two numerical variables, scatterplot.....	33
scatterplots.....	33
2E Report on scatterplot.....	34
► Direction.....	34
► Form.....	34
► Strength.....	34
2F Pearson's correlation coefficient, r	35
Guidelines for classifying the strength of a linear association.....	35
2G Coefficient of determination, r^2	36
2H Correlation and causality.....	37
Correlation does not imply causality.....	37
Establishing causality.....	37
Possible non-causal explanations for an association.....	37
Common response.....	37
Confounding variables.....	37
Coincidence.....	38
2I Which graph for categorical / numerical mix?.....	38
3 INVESTIGATING LINEAR ASSOCIATIONS.....	39
3A Least squares regression line applied to numerical data.....	39
The least squares line.....	39
3B Using the least squares regression line to model a relationship between two numerical variables.....	40
Interpreting the slope and intercept of a regression line.....	40
Using the regression line to make predictions.....	40
Interpolation and extrapolation.....	40
The coefficient of determination.....	40
The residual plot – assessing the appropriateness of fitting a linear model to data.....	41
Performing a regression analysis.....	41
Report regression analysis.....	42
Example.....	42
3C Regression analysis on the calculator.....	43
In the Home screen, 1: New Document → 4: Add Lists & Spreadsheet.....	43
4 : DATA TRANSFORMATION.....	45

Turn a bendy curve straight,.....	45
6 Transformations, 4 graph shapes.....	45
The best transformation.....	45
5 INVESTIGATING AND MODELLING TIME SERIES.....	49
5A Time series data.....	49
Features to report.....	49
Trend.....	49
Cycles.....	49
Seasonality.....	49
Structural change.....	49
Outliers.....	49
Irregular (random) fluctuations.....	49
5B Smoothing with moving means.....	50
Three-moving mean.....	50
Centring.....	50
5C Smoothing with moving medians.....	51
5D Seasonal indices.....	52
Calculating seasonal indices (one year).....	52
Calculating seasonal indices (multiple years).....	53
Interpreting the seasonal indices.....	53
Deseasonalising a time series.....	54
5E Fit a trend line.....	55
... no seasonal component.....	55
... with seasonal component.....	55
Forecasting.....	55
7 MODELLING GROWTH AND DECAY WITH RECURSION.....	57
7A Sequences and recurrence relations.....	57
Sequence.....	57
Recursion.....	57
Recurrence relation.....	57
7B Arithmetic sequences for linear growth and decay.....	58
Common difference, D.....	58
Recurrence relation for arithmetic sequence.....	58
Finding the n_{th} term in an arithmetic sequence.....	58
Simple interest loans and investments.....	58

Depreciation, flat rate, or fixed rate.....	59
Depreciation, unit cost.....	59
7D Geometric sequences for growth and decay.....	61
Common ratio, R.....	61
Recurrence relation for geometric sequence.....	61
Finding the n_{th} term in a geometric sequence.....	61
7E Finance applications using geometric sequences.....	62
Compounding interest loans and investments.....	62
Convert annual interest to compounding period.....	62
Depreciation, reducing-balance.....	63
Effective interest rate.....	63
8 REDUCING BALANCE LOANS, ANNUITIES AND INVESTMENTS.....	65
8A Compound interest investments with additions to the principal.....	65
Finance solver.....	65
8B Reducing balance loans and annuities.....	66
Finance solver : reducing balance loan.....	66
Finance solver : annuity.....	66
8C Amortisation tables.....	67
8D Analysing financial situations using amortisation tables.....	68
Finding the final payment.....	68
Finding the total payment made/received and total interest paid/earned.....	68
8H Interest-only loans.....	69
Finance solver : interest-only loan.....	69
8I Perpetuities.....	70
Finance solver : perpetuity.....	70
Finance solver.....	71
Finance solver creates an amortisation table.....	71
Amortisation table (doc).....	72
Finance Solver Blanks.....	72
10 : MATRICES.....	75
Calculator tips.....	75
Create a matrix, and give it a name.....	75
Matrix arithmetic (for matrices with names).....	75
Determinant and inverse.....	76
10A Matrix basics.....	76

Order (Size) of a matrix.....	77
Elements of a matrix.....	77
Transpose of a matrix T	77
Row matrix.....	77
Column matrix.....	77
Square matrix.....	78
Diagonal matrix.....	78
Identity matrix, I	78
Symmetric matrix.....	78
Triangular matrix.....	79
The zero, or null, matrix, 0	79
10C Adding and subtracting matrices.....	80
Addition of matrices.....	80
Subtraction of matrices.....	80
10D Scalar multiplication.....	81
10E Matrix multiplication.....	82
Matrix powers.....	82
10E Matrix inverse, the determinant and matrix equations.....	83
The inverse matrix, A^{-1}	83
The determinant, \det , of a matrix.....	83
Matrix inverse recipe.....	83
Matrix equations.....	84
10F Binary, permutation and communication matrices.....	85
Binary matrix.....	85
Permutation matrix.....	85
Inverses of permutation matrices.....	85
Communication matrices.....	86
Redundant communication links.....	86
10G Dominance matrices.....	87
One-step dominance.....	87
Two-step dominance.....	87
11 TRANSITION MATRICES AND LESLIE MATRICES.....	89
11A Setting up a transition matrix.....	89
Transition matrix diagram blank.....	90
11B Interpreting transition matrices.....	91
11C Transition matrix recursion, $S_{n+1} = T \times S_n$.....	92

Matrix recurrence relation.....	92
Rule for finding S_n after n transitions (or time intervals).....	92
The steady-state solution.....	93
11D Transition matrix recursion, $S_{n+1} = T \times S_n + B$	94
Using the inverse matrix of a transition matrix.....	94
11E Leslie matrices.....	95
Birth rates.....	95
Survival rates.....	95
Life cycle transition diagram.....	96
Population state matrix.....	96
Finding the population matrix S_n after n time periods.....	96
Example : let.....	96
Limiting behaviour of Leslie matrices.....	97
A Leslie matrix and state matrix with constant rate of increase.....	97
Periodic, increasing and decreasing rates of change.....	98
Row and column matrices to extract information from matrices.....	98
13 GRAPHS, NETWORKS AND TREES: MINIMUM CONNECTING PROBLEMS	
.....	101
13A Graphs and networks.....	101
Simple graphs.....	102
Isolated vertex.....	102
Degenerate graphs.....	102
Connected graphs.....	102
Bridge.....	102
Complete graphs.....	102
Subgraphs.....	103
Isomorphic (equivalent) graphs.....	103
13A continued, Planar graphs and Euler's formula.....	103
Planar graphs.....	103
Faces.....	103
Euler's formula.....	104
13B Adjacency matrix.....	104
13C Walks, trails, paths, circuits and cycles.....	105
Walk.....	105
Trail.....	105
Path.....	105
Circuit.....	106

Cycle.....	106
Eulerian trails and circuits.....	107
Eulerian trail.....	107
Eulerian circuit.....	107
Applications of Eulerian trails and circuits.....	107
Hamiltonian paths and cycles.....	108
Hamiltonian path.....	108
Hamiltonian cycle.....	108
13D Weighted graphs and networks.....	109
Weighted graph.....	109
Network.....	109
The shortest path problem.....	109
13E Dijkstra's algorithm.....	109
13F Trees and minimum connector problems.....	113
Tree.....	113
Spanning tree.....	113
Minimum spanning tree.....	113
Prim's algorithm for finding a minimum spanning tree.....	114
Kruskal's algorithm for finding a minimum spanning tree.....	114
14 FLOW, MATCHING AND SCHEDULING PROBLEMS.....	115
14A Flow problems.....	115
Directed graph.....	115
Minimum flow.....	115
Cuts.....	115
Capacity of a cut.....	115
Cut, cut capacity and minimum cut capacity.....	115
Calculating maximum flow by tracking flow through a network.....	116
14B Matching and allocation problems.....	117
The Hungarian algorithm.....	117
14C Precedence tables and activity networks.....	119
Draw an activity network from a precedence table.....	119
14D Scheduling problems.....	120
Weighted precedence table.....	120
Float times.....	120
Earliest starting times (EST).....	121
Forward scanning.....	121

Latest starting times (LST).....	122
Identifying float times and the critical path.....	124
Critical path.....	124
14E Crashing.....	125
Crashing example.....	125
Crashing with cost.....	125

1 : INVESTIGATING DATA DISTRIBUTIONS

1A Types of data

Categorical		Numerical	
Data fits into categories.		Data has been counted or measured	
Nominal	Ordinal	Discrete	Continuous
Yellow, Red, Blue	Small, Medium Large Star rating ★★★ ★★ ★	Number of siblings Days off sick	Height

1B Display and describe categorical variables

Frequency tables

list the values in a data set, and how often each value occurs.

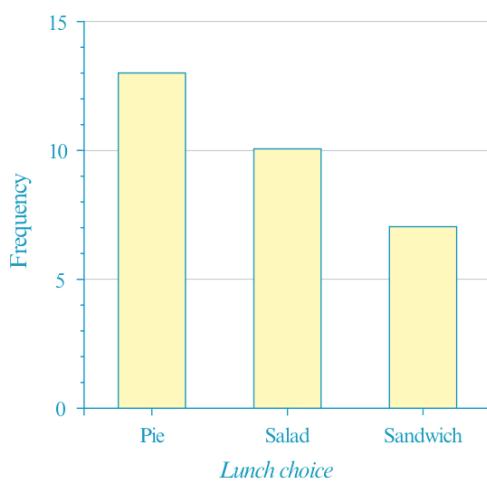
- frequency: the number of times a value occurs
- percentage frequency : the percentage of times a value occurs, = $\frac{\text{count}}{\text{total}} \times 100$

Example : thirty children chose a sandwich, a salad or a pie for lunch, as follows:

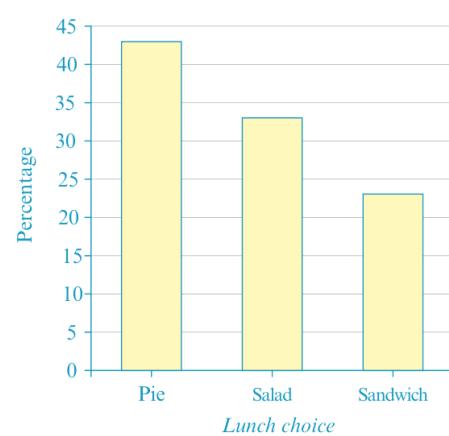
sandwich × 7

salad × 10

pie × 13

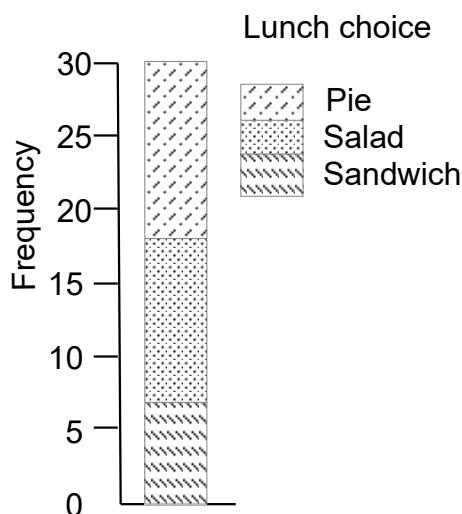

Lunch choice	Frequency	
	Number	%
Sandwich	7	23.3
Salad	10	33.3
Pie	13	43.3
Total	30	99.9 ≈ 100

Bar charts

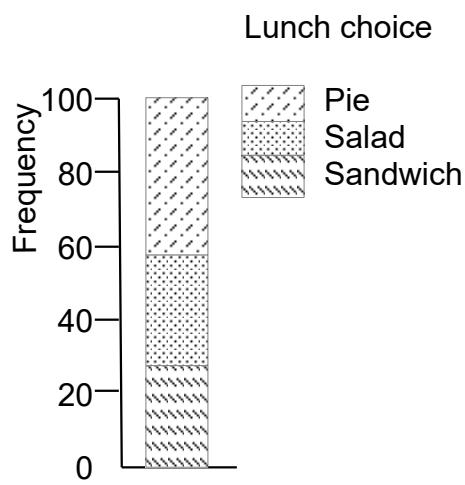

are for categorical data

- frequency or percentage frequency is shown on the vertical axis
- the variable being displayed is plotted on the horizontal axis
- the height of the bar (column) gives the frequency (or percentage)
- the bars are drawn with gaps to indicate that each value is a separate category
- there is one bar for each category.

Bar chart



Percentage bar chart



Segmented bar chart

Segmented bar chart

Percentage segmented bar chart

Mode, or modal category

is the most frequently occurring category.

Categorical variable report guidelines

- Briefly summarise the context in which the data were collected including the number of individuals involved in the study.
- If there is a clear modal category, ensure that it is mentioned.
- Include frequencies or percentages in the report. Percentages are preferred.
- If there are a lot of categories, it is not necessary to mention every category, but the modal category should always be mentioned.

1C Displaying and describing numerical data

Frequency tables

Discrete data, small number of values

use each value as a category

30 Year 11 students report the following number of siblings :

2 3 4 0 3 2 3 0 4 1 0 0 1 2 3 0 2 1 1 4 5 3 2 5 6 1 1 1 0 2

$$\% \text{ frequency} = \frac{\text{Number}}{\text{Total}} \text{ e.g. } \frac{6}{30} \times 100 = 20.0$$

Number of siblings	Frequency	
	Number	%
0	6	20.0
1	7	23.3
2	6	20.0
3	5	16.7
4	3	10.0
5	2	6.7
6	1	3.3
Total	30	100.0

Grouped frequency table

when data has a large range of values or when the variable is continuous

The data below give the average hours worked per week in 23 countries.

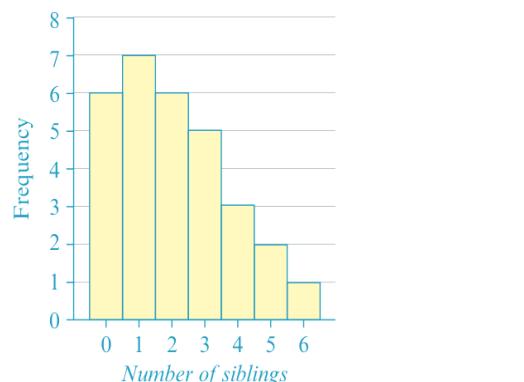
35.0 48.0 45.0 43.0 38.2 50.0 39.8 40.7

40.0 50.0 35.4 38.8 40.2 45.0 45.0 40.0

43.0 48.8 43.3 53.1 35.6 44.1 34.8

$$\% \text{ frequency} = \frac{\text{Number}}{\text{Total}} \text{ e.g. } \frac{1}{23} \times 100 = 4.3\%$$

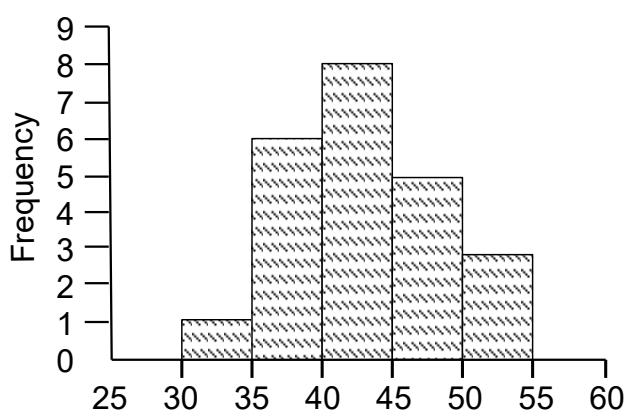
Average Frequency hours worked	Frequency	
	Number	%
30.0 – 34.9	1	4.3
35.0 – 39.9	6	26.1
40.0 – 44.9	8	34.8
45.0 – 49.9	5	21.7
50.0 – 54.9	3	13.0
Total	23	99.9


Histograms

are for numerical variables.

- frequency (number or percentage) is shown on the vertical axis
- each column corresponds to a data value, or data interval

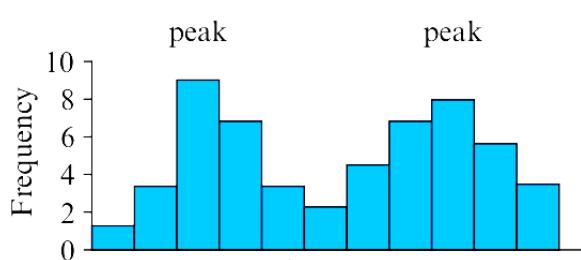
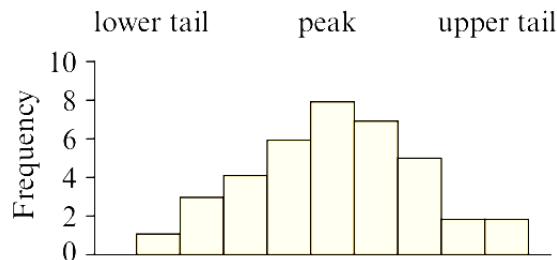
BUT ungrouped discrete data has the actual data value located at the middle of the column


Histogram for ungrouped discrete data

Number of Siblings	Frequency
0	6
1	7
2	6
3	5
4	3
5	2
6	1
Total	30

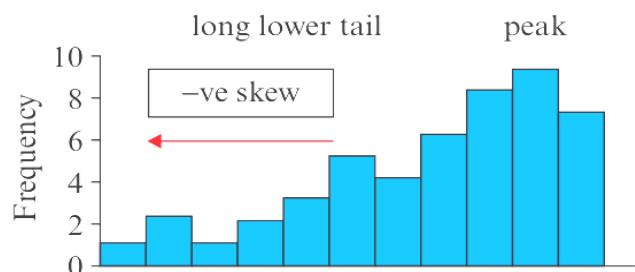
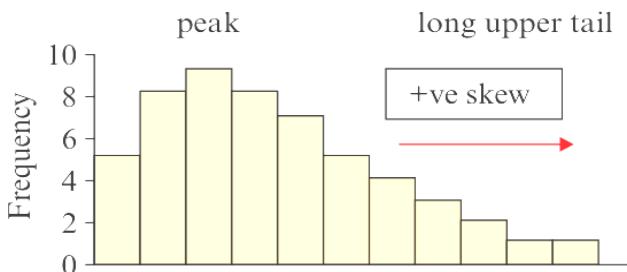
actual value at middle of each column

Histogram from frequency table



Average Frequency hours worked	Frequency	
	Number	%
30.0 – 34.9	1	4.3
35.0 – 39.9	6	26.1
40.0 – 44.9	8	34.8
45.0 – 49.9	5	21.7
50.0 – 54.9	3	13.0
Total	23	99.9

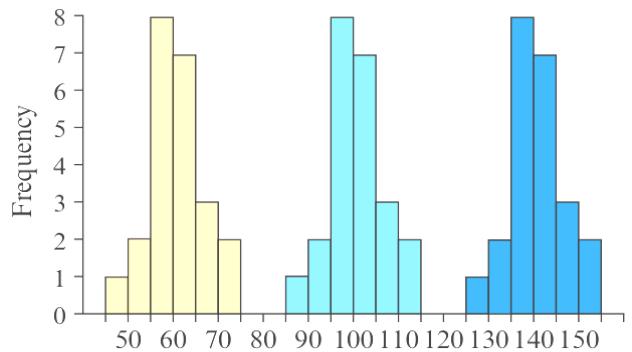
Average hours worked

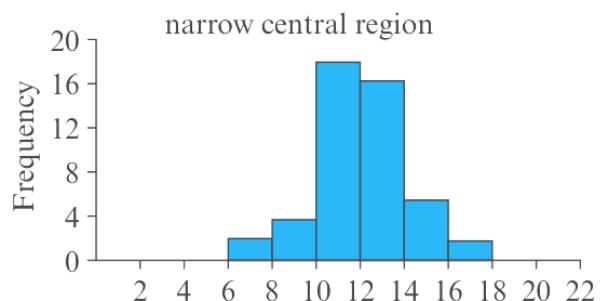
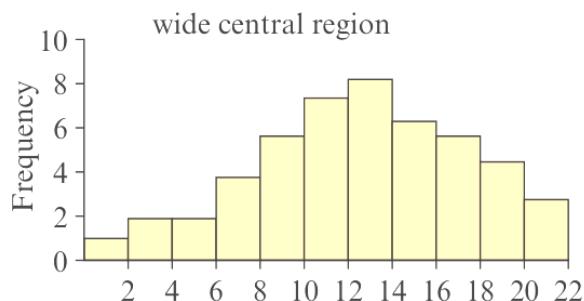
Report histogram



Shape

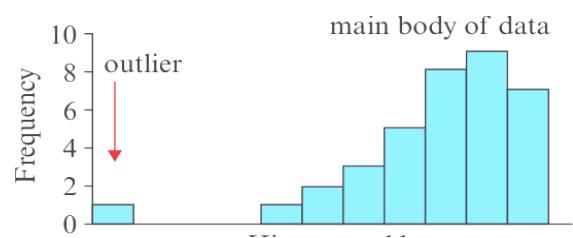
Symmetric distributions

Single peaked symmetric distribution.	Double peaked symmetric distribution.
intelligence test scores weights of oranges any other data for which the values vary evenly around some central value.	Bimodal distribution. data from two different populations : distance thrown by male and female discus throwers.


Skewed distributions



Positive skew	Negative skew
house prices pay rates in a large company	age at death

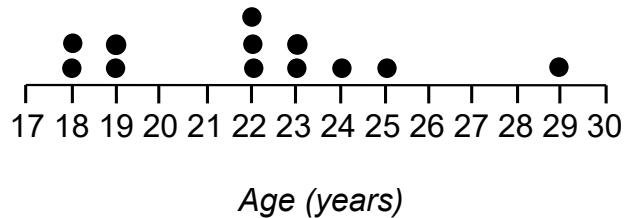
Centre


Identical in shape, these distributions are 'centred' at different points along the axis.

Spread

Outliers

1D Dot plots and stem plots


Dot plots

Dot plots display fairly small data sets where the data takes a limited number of values.

The ages (in years) of a cricket team are:

22 19 18 19 23 25 22 29 18 22 23 24 22

Construct a dot plot of these data.

Stem plots

Test results

0	2, 5, 7	The last digit is the leaf.
1	5, 9, 8, 7, 9, 9	
2	4, 4, 8, 7, 5	
3	0, 3, 7,	
4	2, 5	
5	2, 5	

Key : 1 | 5 = 15

Stem plots with split stems

Generally the stem is split into halves or fifths as shown.

Marks obtained by 17 VCE students on a statistics test.

0 | 2, 7, 9
1 | 0, 1, 2, 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 8
Key : 1 | 5 = 15

0 | 2
0 | 7, 9
1 | 0, 1, 2, 2, 3, 4
1 | 5, 5, 6, 6, 6, 7, 7, 8
Key : 1 | 5 = 15

0 | 2
0 | 7
0 | 9
1 | 0, 1
1 | 2, 2, 3
1 | 4, 5, 5
1 | 6, 6, 6, 7, 7
1 | 8
Key : 1 | 5 = 15

1E Using a \log_{10} scale to display data

$\log_{10}x$

If $\log_{10}x = b$ then $10^b = x$

$\log_{10}(100) = 2$, because $10^2 = 100$

$\log_{10}(1000) = 3$, because $10^3 = 1000$

Logarithmic transformation

involves changing the scale on the horizontal axis from x to $\log_{10}(x)$, and replacing each of the data values with its logarithm.

Working with logarithms

Find the log of 45.

$$\log_{10}(45) = 1.65\dots$$

Find the number with log equal to 2.7125. $10^{2.7125} = 515.82\dots$

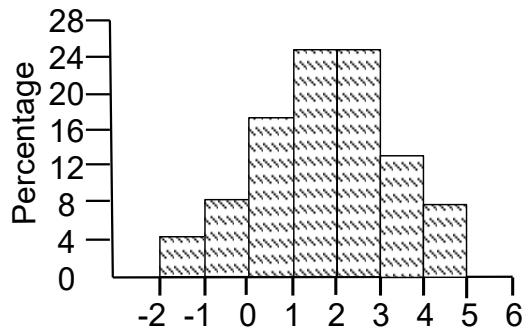
Analysing data displays with a logarithmic scale

Histogram of the weights of 27 animal species plotted on a log scale.

a) What body weight is represented by the number 4 on the log scale?

$$10^4 = 10,000$$

b) How many of these animals have body weights more than 10 000kg?


Last column on the right. $7.4\% \text{ of } 27 = 2$.

c) The weight of a cat is 3.3 kg. Use your calculator to determine the log of its weight.

$$\log_{10}(3.3) = 0.518\dots$$

d) Determine the weight (in kg) of the animal with a $\log(\text{body weight})$ of 3.4 (the elephant).

$$10^{3.4} = 2511.88\dots$$

1F Measures of centre and spread

Median, range and interquartile range

Median

is the middle value in an ordered data set.

For n data values the median is located at the $\left(\frac{n+1}{2}\right)$ data position,

odd number of data 2 3 4 5 5 5 6 7 8 8 11

Median value at $\frac{11+1}{2} = 6^{\text{th}}$ position. Median = 5

even number of data 2 3 4 5 5 6 7 7 8 8 11 11

Median value average of values at $\frac{n}{2}$ and $\frac{n}{2}+1 = 6^{\text{th}}$ and 7^{th} positions. Median = $\frac{6+7}{2} = 6.5$

Range

R , is the difference between the largest and smallest values in the data set.

$R = \text{largest data value} - \text{smallest data value}$

Probs with range :

Because the range depends only on the two extreme values in the data, it is not always an informative measure of spread. For example, one or other of these two values might be an outlier.

And, any data with the same highest and lowest values will have the same range, irrespective of the way in which the data are spread out in between.

Interquartile range (IQR)

To measure the spread of a data distribution around the median (M) we use the interquartile range (IQR).

- arrange all observations in order according to size
- divide the observations into two equal-sized groups, and if n is odd, omit the median from both groups
- locate Q1, the first quartile, which is the median of the lower half of the observations
- locate Q3, the third quartile, which is the median of the upper half of the observations.

The interquartile range IQR is then: $IQR = Q3 - Q1$

Why is IQR more useful than range?

The IQR is a measure of spread of a distribution based on the middle 50% of observations. Since the upper 25% and lower 25% of observations are discarded, the interquartile range is generally not affected by the presence of outliers.

The mean and standard deviation

Mean \bar{x}

means average

\bar{x} means add up all the (Σ) numbers (x) and then divide by how many there are (n)

$$\bar{x} = \frac{\Sigma x}{n}$$

mean of 4, 5 and 6 is $\frac{4 + 5 + 6}{3} = 5$

Choosing between the mean and the median

- symmetric and no outliers : mean or median
- clearly skewed and/or there are outliers : median

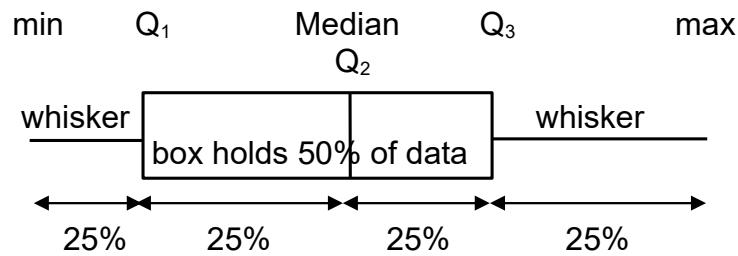
Standard deviation (s)

measures the spread of a distribution about the mean (\bar{x})

$$s = \sqrt{\left(\frac{\sum (x - \bar{x})^2}{n-1} \right)}$$

where n is the number of data values (sample size) and \bar{x} is the mean.

1G The five-number summary and the boxplot


Five-number summary

of data arranged in ascending order.

- Minimum value (min)
- Lower quartile (Q_1) : the median of the bottom half. 25% of the data is below this number.
- Median (Q_2) : the median value. 50% of the data is above this number, 50% below
- Upper quartile (Q_3) : the median of the top half. 75% of the data is below this number.
- Maximum value (max)

Boxplot

is the five-number summary in picture form.

Outliers

Outlier : any data point

smaller than $Q_1 - 1.5 \times \text{IQR}$ (lower fence)

or

bigger than $Q_3 + 1.5 \times IQR$

(lower fence)

Shown with a dot or a cross on a boxplot

Worked example : boxplot with outlier

33 students spent these hours on a school project.

2 3 4 9 9 13 19 24 27 35 36 37 40 48 56 59 71 76 86 90
92 97 102 102 108 111 146 147 147 166 181 226 264

Odd number of data points. Median value at point $\frac{33+1}{2}$ which is 71.

Divide data into two groups. 71 omitted from both groups.

[2 3 4 9 9 13 19 24 27 35 36 37 40 48 56 59]

16 = even number of data points. Q_1 is average of values at $\frac{16}{2}$ and $\frac{16}{2}+1$

$$Q_1 = \frac{24+27}{2} = 25.5$$

[76 86 90 92 97 102 102 108 111 146 147 147 166 181 226 264]

Q_3 is average of values at $\frac{16}{2}$ and $\frac{16}{2}+1$

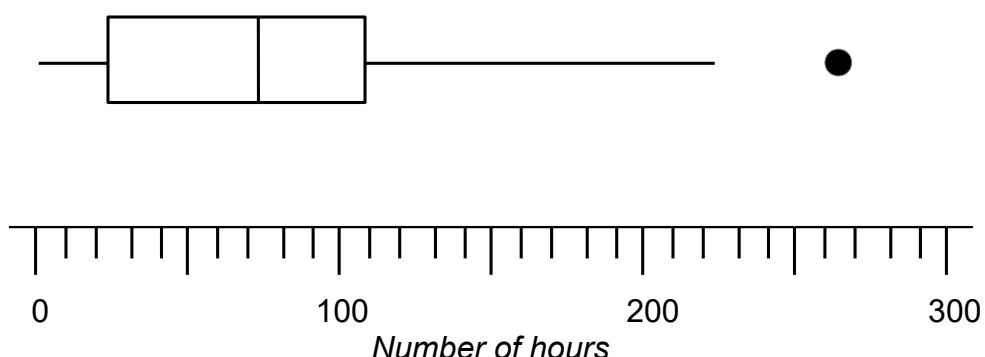
$$Q_3 = \frac{108+111}{2} = 109.5$$

$$IQR = Q_3 - Q_1 = 109.5 - 25.5 = 84$$

$$\text{Lower fence} = Q_1 - 1.5 \times IQR$$

$$= 25.5 - 1.5 \times 84$$

$$= -100.5$$

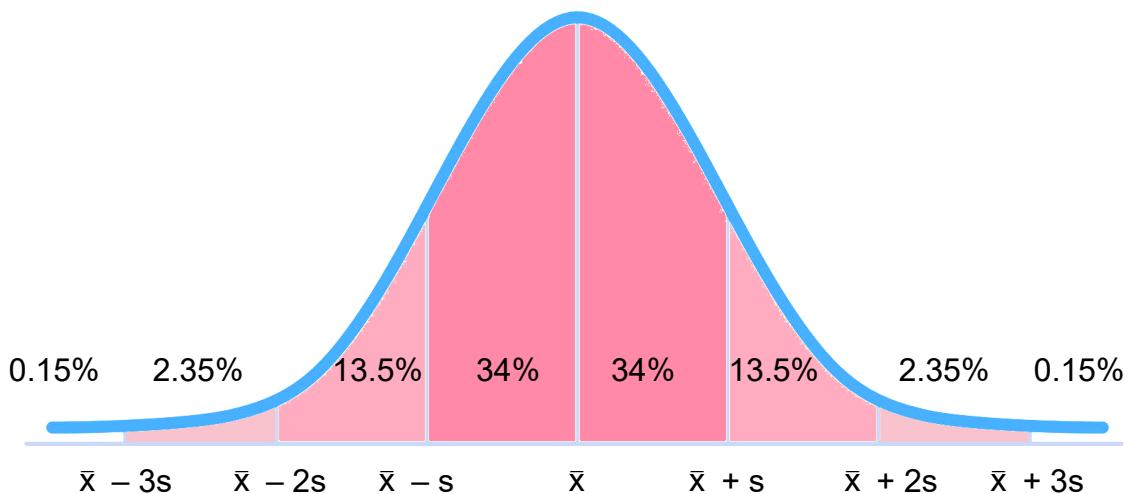

$$\text{Upper fence} = Q_3 + 1.5 \times IQR$$

$$= 109.5 + 1.5 \times 84$$

$$= 235.5$$

264 is above the upper fence, so it is an outlier and will be drawn with a dot.

The whisker will extend to 226, which is the largest value that is not an outlier.


Report Boxplot

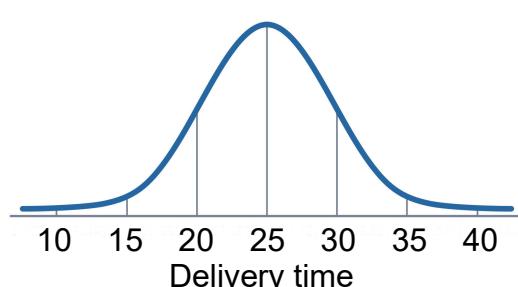
The distribution is / is not symmetric and without outliers / but with outliers. The distribution is centred at BLAH, the median value. The spread of the distribution, as measured by the IQR, is BLAH and, as measured by the range, BLAH. There are BLAH outliers: BLAH, BLAH, BLAH and BLAH.

1H The normal distribution and the 68–95–99.7% rule

For any data distribution which is approximately symmetric and bell shaped, approximately:

68% lie within $\bar{x} \pm s$ 95% lie within $\bar{x} \pm 2s$ 99.7% lie within $\bar{x} \pm 3s$

Example : find % from interval


The distribution of delivery times for pizzas made by House of Pizza is approximately normal, with a mean of 25 minutes and a standard deviation of 5 minutes.

- What percentage of pizzas have delivery times of between 15 and 35 minutes?
- What percentage of pizzas have delivery times of greater than 30 minutes?
- In 1 month, House of Pizza delivers 2000 pizzas. Approximately how many of these pizzas are delivered in less than 10 minutes?

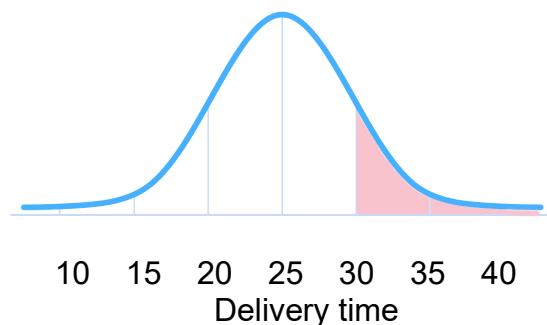

a)

Mean is the number in the middle.

Add the standard deviation, that's 5, at each mark to the right, and subtract the standard deviation at each mark to the left.

Shade the region under the normal curve representing delivery times of between 15 and 35 minutes.

Referring to the labelled bell curve above, the shaded areas represent


$$13.5\% + 34\% + 34\% + 13.5\% = 95\%$$

b)

Shade the region under the normal curve representing delivery times of greater than 30 minutes.

$$13\% + 2.35\% + 0.15\% = 16\%$$

95% of pizzas have a delivery time of between 15 and 35 minutes.

c)

2000 pizzas delivered.

0.15% delivered in less than 10 minutes.

$$0.15\% \times 2000 = 3$$

Example : find interval from %

The distribution of the diameter of bolts is approximately symmetric and bell shaped, with a mean of 5 mm and standard deviation of 0.01mm.

If approximately 68% of the bolts measure between a and b, what are possible values for a and b?

The interval which contains 68% of the bolts is 1SD either side of the mean.

$$a = 5 - 0.01 = 4.99 \text{ mm} \quad b = 5 + 0.01 = 5.01 \text{ mm}$$

Standard score, z-score

$$\text{standard score} = \frac{\text{actual score} - \text{mean}}{\text{standard deviation}}$$

$$z = \frac{x - \bar{x}}{s}$$

Standard score is a measure of how average you are. A score of 0 means you are exactly the same as expected, average. A score of less than 0, a negative number, means you are somewhat lacking, below average. A score of more than 0, a positive number, means you are a standout performer, above average.

Example : raw score to z-score

IQ is normally distributed, with a mean, \bar{x} , of 100 and a standard deviation, s , of 15.

What is the z-score for a student who gets 112 in an IQ test? What does it mean?

$$z = \frac{x - \bar{x}}{s} = \frac{112 - 100}{15} = 0.8$$

This student is less than one standard deviation away from average. They are nothing remarkable.

Example : z-score to raw score

A student achieves a z-score of 2.2. What did they score in the IQ test? Which percentage do they fit into?

$$x = z \times s + \bar{x}$$

$$\text{score} = 2.2 \times 15 + 100$$

Student's test score = 133.

z-score of 2.2 means they are between 2 and 3 standard deviations above the average. They are among the top 2.5% of the population.

3 INVESTIGATING LINEAR ASSOCIATIONS

3A Least squares regression line applied to numerical data

is given by, $y = a + bx$, where:

$$\text{the slope (b) is given by: } b = \frac{rs_y}{s_x}$$

$$\text{and the intercept (a) is then given by : } a = \bar{y} - b \bar{x}$$

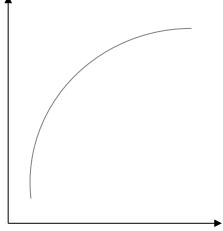
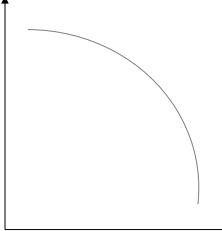
- r is the correlation coefficient
- s_x and s_y are the standard deviations of x and y
- \bar{x} and \bar{y} are the mean values of x and y .

The least squares line

minimises the sum of the squares of the residuals.

Assumptions for fitting a least squares line to data are the same as for using the correlation coefficient, r . These are that:

- the data is numerical
- the association is linear
- there are no clear outliers



4 : DATA TRANSFORMATION

Turn a bendy curve straight,

and then linear regression an equation for the straight line.
As if by magic, that equation works for the bendy curve we started with.

This stuff is done on the calculator.

6 Transformations, 4 graph shapes

Possible transformations	Graph shape	Possible transformations
y^2 $\log(x)$ $\frac{1}{x}$		y^2 x^2
$\log(y)$ $\frac{1}{y}$ $\log(x)$ $\frac{1}{x}$		$\log(y)$ $\frac{1}{y}$ x^2

The best transformation

is the one which results in the best linear model.

For each transformation, consider :

- The residual plot, in order to evaluate the linearity of the transformed association.
- The value of the coefficient of determination, r^2 .

5B Smoothing with moving means

Smoothing can sometimes remove some of the fluctuations in time series data so that we can see the underlying trend.

Three-moving mean

replace each data value with the mean of that value and the one on each side.

$$\text{smoothed } y_2 = \frac{y_1 + y_2 + y_3}{3}$$

The first and last points in the time series do not have values on each side, so they are omitted.

Centring

involves taking a two-moving mean of the already smoothed values so that they line up with the original data values. Smoothing with centring is only required when smoothing using an even number of data values.

Example : the table below gives the temperature (°C) recorded at a weather station at 9.00 a.m. eachday for a week.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Temperature	18.1	24.8	26.4	13.9	12.7	14.2	24.9

a) Calculate the four-moving mean smoothed temperature with centring for Thursday.

1 For four-mean smoothing with centring, write 24.8 26.4 13.9 12.7 14.2 down the five data values centred on Thursday

2 Calculate the mean of the first four values (mean 1)

$$\text{mean 1} = \frac{24.8 + 26.4 + 13.9 + 12.7}{4} = 19.45$$

and the mean of the last four values (mean 2).

$$\text{mean 2} = \frac{26.4 + 13.9 + 12.7 + 14.2}{4} = 16.8$$

The centred mean is then the average of mean 1 and mean 2

$$\text{centred mean} = \frac{\text{mean 1} + \text{mean 2}}{2}$$

$$= \frac{19.45 + 16.8}{2} = 18.125$$

4 Write down your answer

The four-mean smoothed temperature centred on Thursday is 18.1 °C (to 1 d.p.).

8 REDUCING BALANCE LOANS, ANNUITIES AND INVESTMENTS

8A Compound interest investments with additions to the principal

$$V_0 = \text{the Principal}, \quad R = 1 + \frac{r}{100 \times PpY} \quad D = \text{additional payment}$$

V_n = the value of the investment after n payments

$$V_{n+1} = RV_n + D$$

Finance solver

- PV : Negative: you make an investment by giving the bank some money.
- Pmt : Negative: you make regular payments to the bank.
- FV : Positive: after the payment is made and the investment matures, the bank will give you the money.

10E Matrix multiplication

<p>number of columns in 1st matrix must be same as number of rows in 2nd matrix.</p>	$(m \times n) \quad (n \times p) = (m \times p)$ <p>must be the same</p>
<p>product matrix has number of rows from 1st matrix number of columns from 2nd matrix.</p>	$(m \times n) \quad (n \times p) = (m \times p)$ <p>this many rows this many columns</p>

Multiply each row in A by each column in B. (Run along the row, dive into the column.)

Multiply row m by column p and the result goes in a_{mp} of the product matrix.

Multiply row 1 by column 1 and the result goes in a_{11} of the product matrix.

Multiply row 2 by column 1 the result goes in a_{21} of the product matrix.

$$\text{Let } A = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \quad \text{Then } AB = \begin{bmatrix} 1 \times 4 + (-2) \times 1 \\ (-2) \times 4 + 0 \times 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$

$$\text{Let } A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \\ 1 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 7 & 10 \\ 9 & 8 \end{bmatrix} \quad \text{Then } AB = \begin{bmatrix} 2 \times 7 + 3 \times 9 & 2 \times 10 + 3 \times 8 \\ 5 \times 7 + 4 \times 9 & 5 \times 10 + 4 \times 8 \\ 1 \times 7 + 6 \times 9 & 1 \times 10 + 6 \times 8 \end{bmatrix} = \begin{bmatrix} 41 & 44 \\ 71 & 82 \\ 61 & 58 \end{bmatrix}$$

Matrix powers

We define the various powers of matrices as:

A^2 as $A \times A$,

A^3 as $A \times A \times A$,

A^4 as $A \times A \times A \times A$ and so on.

Only square matrices can be raised to a power.

11 TRANSITION MATRICES AND LESLIE MATRICES

11A Setting up a transition matrix

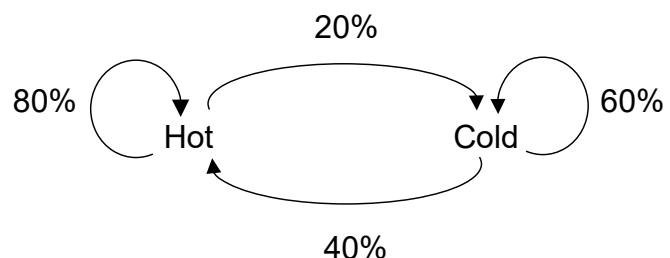
Transition means changing from one state to another.

Transition matrix, T , represents the amount of change occurring at each step.

Used with a state matrix, S_n , which lists the numbers in each state at step n .

Essential knowledge.

A transition matrix is always a square matrix.


Each column total of the proportions (or percentages) must equal 1 (100%).

Example : a cafe notices that

- 80% of customers who buy hot food (H) for lunch will buy hot food again the next day.
- 60% of customers who buy cold food (C) for lunch will buy cold food again the next day.

20% of customers who buy hot food (H) for lunch will buy cold food the next day.

40% of customers who buy cold food (C) for lunch will buy hot food the next day.

Circles go on the leading diagonal.

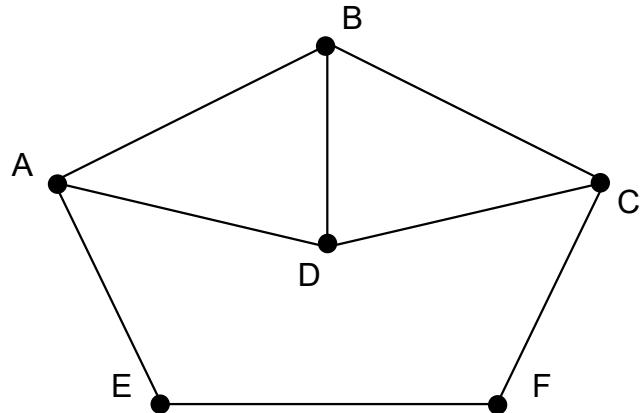
Hot to Cold is at a_{21}

Write percentages as decimals.

$$\begin{array}{c} \text{Day 1} \\ \text{H} \quad \text{C} \\ \text{Day 2} \quad \begin{bmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{bmatrix} \quad \begin{matrix} \text{H} \\ \text{C} \end{matrix} \end{array}$$

13C Walks, trails, paths, circuits and cycles

Walk

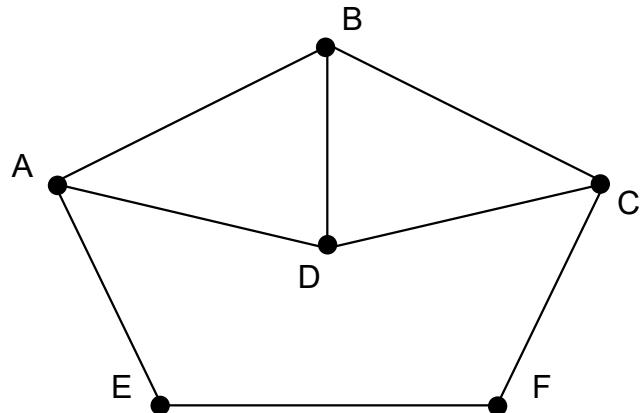

is a sequence of edges linking successive vertices, that connects two different vertices in a graph.

An example of a walk is

A – D – C – B – D – A – E

Note1: A – D is walked along in both directions.

Note2: A walk does not require all of its edges or vertices to be different.

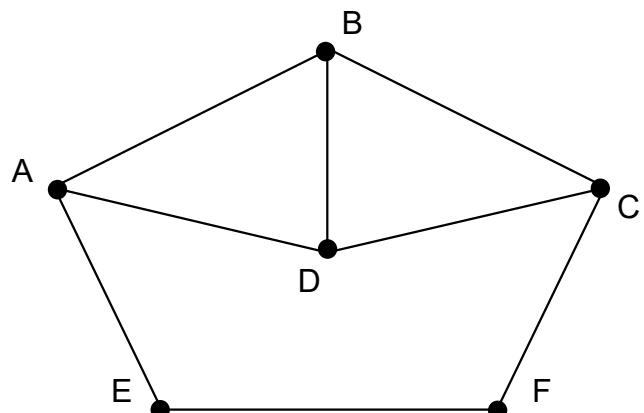

Trail

is a walk with no repeated edges.

An example of a trail is

A – D – C – B – A – E – F – C

There are no repeated edges. But there are two repeated vertices, A and C. This is permitted on a trail.


Path

is a walk with no repeated edges and no repeated vertices.

An example of a path is

A – D – B – C – F – E

There are no repeated edges and no repeated vertices.

14B Matching and allocation problems

The Hungarian algorithm

allocates people to roles

This is the cost matrix for 4 machines, A – D, that can be operated by 4 people, 1 – 4.

Person 2 takes 30 minutes to complete the task on machine B.

	Role	A	B	C	D
Person	1	30	40	50	60
	2	70	30	40	70
	3	60	50	60	30
	4	20	80	50	70

The Hungarian algorithm allocates people to machines to minimise the cost.

Step 1:

Subtract the lowest value in each row, from every value in that row.

	Role	A	B	C	D
Person	1	0	10	20	30
	2	40	0	10	40
	3	30	20	30	0
	4	0	60	30	50

Step 2:

If the minimum number of lines required to cover all the zeros in the table is equal to the number of allocations to be made, jump to step 6.

	Role	A	B	C	D
Person	1	0	10	20	30
	2	40	0	10	40
	3	30	20	30	0
	4	0	60	30	50

Otherwise, continue to step 3.

Step 3:

If a column does not contain a zero, subtract the lowest value in that column from every value in that column.

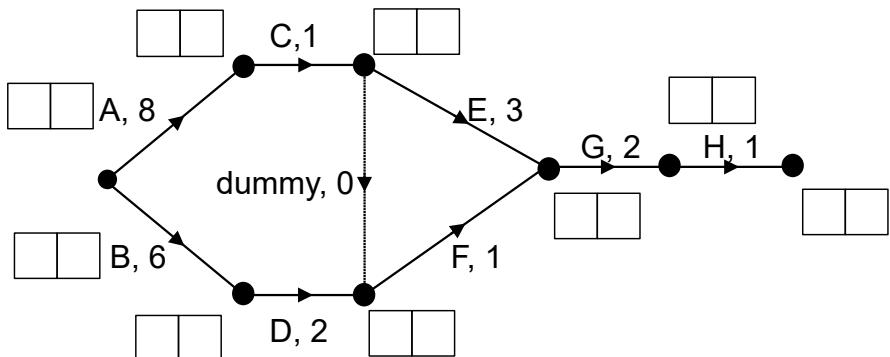
	Role	A	B	C	D
Person	1	0	10	10	30
	2	40	0	0	40
	3	30	20	20	0
	4	0	60	20	50

Step 4:

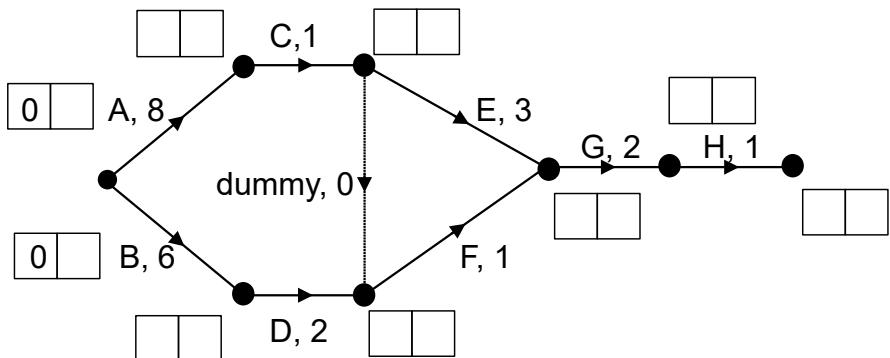
If the minimum number of lines required to cover all the zeros in the table is equal to the number of allocations to be made, jump to step 6.

	Role	A	B	C	D
Person	1	0	10	10	30
	2	40	0	0	40
	3	30	20	20	0
	4	0	60	20	50

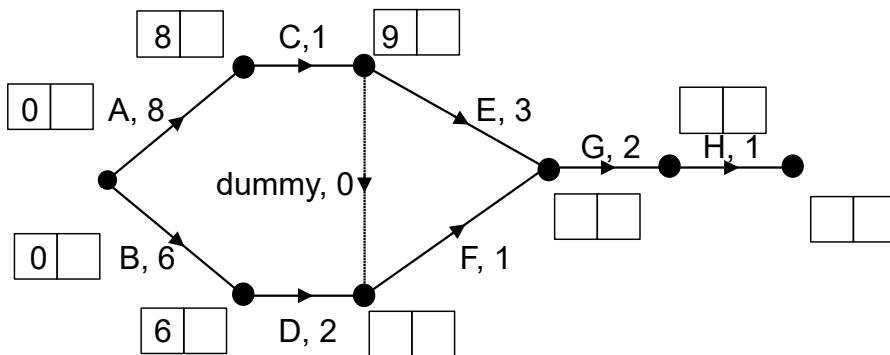
Otherwise, continue to step 5a.


Earliest starting times (EST)

are found by forward scanning.


Forward scanning

- 1 Draw a double box next to each vertex.


If more than one activity begins at a vertex, draw a box for each of these activities.

- 2 Activities that begin at the start of the project have an EST of zero (0).

- 3 Calculate the EST of each activity of the project by adding the EST of the immediate predecessor to the duration of the immediate predecessor.

